Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells.

نویسندگان

  • Jia-Ran Gurr
  • Alexander S S Wang
  • Chien-Hung Chen
  • Kun-Yan Jan
چکیده

Ultrafine titanium dioxide (TiO(2)) particles have been shown to exhibit strong cytotoxicity when exposed to UVA radiation, but are regarded as a biocompatible material in the absence of photoactivation. In contrast to this concept, the present results indicate that anatase-sized (10 and 20 nm) TiO(2) particles in the absence of photoactivation induced oxidative DNA damage, lipid peroxidation, and micronuclei formation, and increased hydrogen peroxide and nitric oxide production in BEAS-2B cells, a human bronchial epithelial cell line. However, the treatment with anatase-sized (200 and >200 nm) particles did not induce oxidative stress in the absence of light irradiation; it seems that the smaller the particle, the easier it is for the particle to induce oxidative damage. The photocatalytic activity of the anatase form of TiO(2) was reported to be higher than that of the rutile form. In contrast to this notion, the present results indicate that rutile-sized 200 nm particles induced hydrogen peroxide and oxidative DNA damage in the absence of light but the anatase-sized 200nm particles did not. In total darkness, a slightly higher level of oxidative DNA damage was also detected with treatment using an anatase-rutile mixture than with treatment using either the anatase or rutile forms alone. These results suggest that intratracheal instillation of ultrafine TiO(2) particles may cause an inflammatory response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types.

BACKGROUND Ultrafine particles have been hypothesised to be an important contributing factor in the toxicity and adverse health effects of particulate air pollution (PM10) and nanoparticles are used increasingly in industrial processes. AIMS To compare the ability of ultrafine and fine particles of titanium dioxide and carbon black to induce inflammation, cause epithelial injury, and affect t...

متن کامل

ترکیبات موجود در فرآورده‌های ضدآفتاب: دی‌اکسیدتیتانیوم (TiO2)

The use of sunscreens should also be recommended in order to work against all kind of ultarviolet (UV)-induced skin damage such as photoallergies, skin wrinkles, sunburn or even skin cancer. Sunscreens contain chemical filters (organic absorb regularly UVB radiation) and physical filters (e.g., TiO2 and ZnO). The second group has been said to reflect and scatter UVB and UVA radiation. TiO2 is ...

متن کامل

Induction of fibrogenic mediators by fine and ultrafine titanium dioxide in rat tracheal explants.

Respirable ambient particles [particulate matter <10 μm (PM10)] are associated with both acute and chronic adverse health effects including chronic airflow obstruction. PM10 can induce expression of inflammatory and fibrogenic mediators, but there is controversy about the types and/or sizes of particles involved and, in particular, whether ultrafine particles are the major toxic agents. To exam...

متن کامل

Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats

Objective Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported to induce ‎oxidative stress and DNA damage. The N-acetylcysteine (NAC) was used to fight oxidative stress-induced ‎damage in various tissues. The aim of this study was to evaluate the toxic effects of TiO2 nanoparticles by oral ‎administration and the protective role of NAC on testes of a...

متن کامل

Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells.

Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insults, including ambient air ultrafine particles. In this study, we examined the effect of a model ultrafine particle on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicology

دوره 213 1-2  شماره 

صفحات  -

تاریخ انتشار 2005